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After 45 years of its development and use1–3, we reflect here on the 
position of MEG among the techniques available to explore and 
resolve brain function and dysfunction. This review focuses on the 
aspects that uniquely characterize MEG. We emphasize the specific 
strengths of the modality, such as its source imaging capabilities. We 
also identify and discuss practical challenges, in particular in signal 
extraction and interpretation.

Because MEG and electroencephalography (EEG) appear to be 
sister electrophysiological techniques that are both sensitive to the 
electrochemical current flows within and between brain cells, MEG 
is sometimes thought to be equivalent to EEG, with limited scientific 
added value. We refute this misconception and explain how distinct 
physical principles make these two modalities complementary in 
many respects, rather than purely redundant. In particular, we argue 
that MEG is the modality with the best combination of direct and 
noninvasive access to the electrophysiological activity of the entire 
brain, with sub-millisecond temporal resolution and ability to resolve 
activity between cerebral regions with often surprising spatial and 
spectral differentiation and minimum bias. Indeed, unlike EEG,  
the accuracy of MEG source mapping is immune to the signal dis-
tortions caused by the complex layering of head tissues, with highly 
heterogeneous conductivity profiles that cannot be measured with 
precision in vivo.

We explore these ideas herein in details and conclude that MEG, 
used independently or in combination with other brain imaging tech-
niques, contributes uniquely to our deeper comprehension of both 
the regional and large-scale neural dynamics of the brain: from the 
clarification of the nature of spontaneous and event-related brain 
activation to the elucidation of the mechanisms that yield functional 
connectivity between regions and the emergence of modes of network  

communication in brain systems. As the function and dynamical 
principles of the signal components present in the volumes of dense 
and intricate MEG data become better understood, we explain how 
MEG plays an increasing and pivotal role toward the elucidation of 
the grand mechanistic principles of cognitive, systems and clinical 
neuroscience. To this end, we emphasize that MEG is particularly 
equipped to bridge human data with animal and computational mod-
els of electrophysiology in health and disease.

We also review the principles of MEG signaling and the state of 
the art of the technology, with a perspective on innovations on the 
horizon. We then highlight key MEG contributions to neuroscience 
and discuss translations to clinical practice. Along the way, while 
we discuss limitations, current difficulties and uncertainties asso-
ciated with the technique, we also wish to correct some mistaken  
perceptions of MEG.

Measurement principles and instrumentation
The basic principles of MEG are simple; the sophistication lies in 
the sensing technology involved and the methodology required to 
extract relevant signal information in the widest variety of experi-
mental contexts. Fundamentally, any electrical current produces 
magnetic induction (often popularly confounded with a magnetic 
field4), whose strength can be measured remote from the current 
source—for example, with a pick-up coil. The magnetic flux across 
the coil surface induces an electrical current in the coil wiring mate-
rial, whose amplitude is instantaneously proportional to that of the 
magnetic induction and is readily measurable.

Basic signal origins. In MEG, the electrochemical currents circulat-
ing within and between neurons generate the magnetic induction. 
Postsynaptic potentials (PSPs) are considered the main generators 
of these ionic currents3,5. There is also convincing though limited 
evidence that fast ripples present in MEG signals in the range of 
500–1,000 Hz could be related to cell discharges6,7. Yet they may also 
be explained by large spike components of PSP activity due to voltage-
dependent channel conductance8 (Fig. 1). The useful frequency band 
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We review the aspects that uniquely characterize magnetoencephalography (MEG) among the techniques available to explore and 
resolve brain function and dysfunction. While emphasizing its specific strengths in terms of millisecond source imaging, we also 
identify and discuss current practical challenges, in particular in signal extraction and interpretation. We also take issue with 
some perceived disadvantages of MEG, including the misconception that the technique is redundant with electroencephalography. 
Overall, MEG contributes uniquely to our deeper comprehension of both regional and large-scale brain dynamics: from the 
functions of neural oscillations and the nature of event-related brain activation, to the mechanisms of functional connectivity 
between regions and the emergence of modes of network communication in brain systems. We expect MEG to play an increasing 
and pivotal role in the elucidation of these grand mechanistic principles of cognitive, systems and clinical neuroscience.
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of MEG signals is about 0.5–1,000 Hz, with 1–80 Hz being the most 
typical9. We discuss below the possible functions and interdepend-
ence across this wide spectral range of brain signals10.

Instrumentation: innovations on the horizon. In practical terms, the 
magnetic signal produced by neural currents in the nanoampere (10−9 A) 
range is formidably weak. Extracranial magnetic inductions are typically 
measured on a scale of femtoteslas (10−15 T), about 10 to 100 million 
times smaller than the Earth’s static magnetic field. This reality imposes 
a need for sensitive sensor technology. The present industry standards 
rely on pick-up coils coupled with superconducting interference devices 
(SQUIDs)2,3. SQUIDs exploit the principles of quantum physics for the 
detection of small electrical currents, like those induced by weak mag-
netic signals, with high sensitivity and large dynamic ranges.

State-of-the-art commercial systems feature coil magnetometers 
arranged in whole-head arrays of about 300 independent channels, 
sampled at up to 30 kHz simultaneously. Magnetic induction travels 
through the air: MEG sensors are not attached to the scalp, as the 
entire sensing apparatus is embedded in a thermally insulated tank, 
called a dewar, filled with 70–100 L of liquid helium. Superconducting 
temperatures minimize thermal noise and therefore optimize data 
quality. Consequently, subject preparation times are much shorter 
than in EEG, as the contactless and gel-free sensors do not need to 
be positioned and carefully verified manually.

Another distinctive property of MEG is that magnetic induction is 
a vector signature of electrodynamics. In concrete terms, MEG sig-
nals depend on the location and orientation of the pick-up coils with 
respect to neural sources, which vary between system manufacturers  
and are relative to the subject’s head position in the helmet.  
This represents a clear practical difference from EEG, which meas-
ures differences of scalar electrical potentials between electrodes 
attached to the scalp. Although the head’s shape and size obviously 
vary between individuals, the standardization of electrode montages 
scaled to the individual anatomy and with a common nomenclature11 
has greatly contributed to streamlining the dissemination and com-
parison of EEG results between instruments, studies and individual 
subjects, including patients. In MEG, both the monitoring of head 
movements during data acquisition and the registration of head posi-
tions between participants are therefore important factors for data 
quality and comparison, respectively. Besides online video monitoring 
of subjects, all MEG systems feature real-time measurements of head 
position. Limited offline software solutions for head movement com-
pensation are available and can be necessary with special populations, 
such as infants12. Creative hardware solutions have been recently 
proposed, using adjustable head casts to consistently reposition the 
subject within and between sessions with millimeter accuracy13.

Also unlike EEG data, MEG measures are reference-free: magnetic 
induction values are not relative to a common measure. The measure-
ment of absolute physical quantities is an asset of MEG. In principle, 
though, EEG datasets can always be re-referenced with respect to 
their instantaneous arithmetic mean as a form of standardization14. 
Furthermore, the dependence of MEG signal strength on head  
position mitigates the advantage of collecting reference-free quanti-
ties. We shall see below that source imaging obviates the limitations 
attached to sensor data analysis and affords one specific strength of 
MEG with respect to EEG.

Overall, the MEG sensing technology is mature but its sophistica-
tion and maintenance impose substantial capital and operating costs. 
Fortunately, emerging opportunities for more cost-effective solutions 
bode well of the long-term sustainability and greater affordability of 
MEG as a research tool.

Helium-based cryogenics are constantly threatened by a looming 
shortage in natural resources. Hence the development of alterna-
tive sensing and instrument technology is vital to MEG, as well as 
other high-end instruments such as MRI scanners. Practical onsite 
helium recycling solutions have emerged and approach 90% efficacy.  
They reduce weekly refills to one or two per year. Still, thermal insu-
lation negatively affects the sensitivity of the instrument: sensors 
are separated from the head surface by a distance of at least 2 cm. 
Recent integration of SQUID sensors in a partially adjustable helmet 
is a true breakthrough, improving signal strength and encouraging  
developmental neuroscience MEG research15.

New sensing technology is maturing. Non-cryogenic HyQUID 
detectors with noise performance equivalent to that of traditional 
SQUIDs is already found in a commercially available system. 
Similarly, optically pumped magnetometers16 (OPM) based on radi-
cally different sensing physics principles also represent an alternative 
to SQUID-based technology. Although less sensitive, OPMs can be 
positioned directly on the scalp surface and therefore pick up stronger 
field strengths as they are brought closer to the brain17. OPMs are very 
cost-effective, which also bodes well for easier access and therefore 
greater adoption of MEG by more neuroscientists.

The extreme sensitivity of present and future MEG sensing tech-
nology is challenged by many electromagnetic nuisance sources.  
Any moving metal object (for example, car traffic, elevators, carts or 
hospital beds) or electrically powered instrument generates magnetic 
induction that is orders of magnitude stronger than the brain’s. Their 
influence can be reduced by combining magnetometers to emphasize 
brain signals with respect to environmental noise. Such gradiometers, 
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Figure 1  Cellular origins of MEG signals. (a) For simplicity, we take the 
cortical pyramidal neuron to epitomize the elementary cellular generator 
of MEG signals. All physiological currents from all cell types generate a 
magnetic induction; the elongated morphology of the pyramidal neuron 
constrains the net primary current circulation along the cell, which is 
a factor in creating greater signal strength in comparison to those from 
more stellate cellular morphologies. The primary current results from an 
imbalance in electrical potentials between the apical dendritic arborescence 
of the cell and its soma and more basal dendrites. The magnetic induction 
isolines in purple are perpendicular to the primary current flow and can 
be picked up outside the head. The sources are twofold: the postsynaptic 
potentials (PSPs), including fast, large-amplitude sodium spikes, and 
axonal discharges (action potentials, AP). The slower components of the 
PSPs are substantially smaller in amplitude than the APs. (b) At the scale 
of cell assemblies, the mass effect of slower PSPs is stronger than that 
of APs owing to their greater overlap in time without requiring rigorous 
synchronization. Computational models and empirical evidence show that 
a minimum of 10,000 to 50,000 cells are required to produce a signal 
detectable with MEG8. It is possible, in principle, that fast PSP spiking 
activity, and possibly shadows of APs, are detectable in MEG.
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arranged either in a radial or tangential (planar) fashion with respect 
to the head surface, greatly improve signal quality but still require 
magnetic shielding from the environment. The best solution remains 
the installation of a heavy (20-ton), multilayered shielding room to 
host the MEG instrument. However, this represents about a quarter 
of the investment cost and can be difficult to site. Lighter and slightly 

more compact shielding solutions based on the active shielding  
technology are possible alternatives.

Finally and remarkably, MEG sensing technology can be used 
to detect magnetic resonance phenomena at ultralow fields (in the 
10–100 mT range). In addition to special magnetic resonance–related 
advantages, there are potential benefits in such all-in-one hybrid 
imaging technology: combined MRI and MEG can be obtained 
simultaneously, thereby limiting registration errors18. Yet the lower 
magnetization induces weaker signal strength and imposes longer 
magnetic resonance acquisition times. It remains unclear whether this 
technology will truly penetrate neuroscience applications.

Distinct capabilities for electrophysiology and imaging
MEG as a method of electrophysiology. In featuring channels arrays 
around the head and sensor signals originating from brain physi-
ological currents, MEG and EEG are sister techniques for noninva-
sive electrophysiology. This apparent similarity has fueled a certain 
amount controversy about the actual scientific and clinical added 
value of MEG. Some EEG scientists consider the technology to be 
simply redundant and not worth the extra cost19,20. This misconcep-
tion has been exacerbated by the fact that to obtain measurable mark-
ers of brain activity, early MEG studies and even many recent ones 
have resorted to the signal extraction techniques of EEG, averaging 
multiple trials of sensor signals time-locked to specific stimulus or 
behavioral events11. The fact that both the timing and spatial prop-
erties of the resulting event-related fields (ERFs) are only partially 
consistent with the extensively studied nomenclature of event-related 
potentials (ERPs) cannot be interpreted in favor of or against MEG 
or EEG. If we imagine that ERFs were entirely concordant with ERPs, 
shall we conclude that MEG is simply redundant with EEG? If ERF 
counterparts of ERPs are absent, does this mean ERPs are actually 
artifactual? This apparent discordance is also true for the power and 
spatial distribution of sensor signals in the typical frequency bands 
of electrophysiology (delta, theta, alpha, etc.; see below).

To understand why MEG and EEG are actually different and com-
plementary techniques for observing the electrical activity of the 
brain, we need to go back to Maxwell electrodynamics4,5. These rules 
show that the spatial topography of magnetic induction and electrical 
potentials created by the same current source depend very differently 
on key factors. First and foremost, EEG signals are primarily and 
strongly affected by the substantial difference in electrical conduc-
tivity between the scalp, skull and other biological tissues. Magnetic 
permittivity, the magnetic equivalent of conductivity, is homogenous 
and identical across all compartments, including the air between the 
scalp and sensors. Consequently, the spatial topography of MEG sen-
sor data is visually and quantitatively less smeared and distorted than 
that of EEG electrical potentials produced by the same physiological 
brain sources. This contributes to a clearer interpretation of MEG 
sensor topography in terms of the putative anatomical locations of 
its underlying brain sources. It also helps separate the contributions 
of brain signals from ambiguous physiological contaminants, such 
as ocular microsaccades21 and muscular artifacts22,23, which can be 
confounded with high-frequency brain signals in EEG but are more 
clearly distinguished on the basis of their distinctive sensor topogra-
phy with MEG. Artifact components can be eliminated or corrected 
when good-practice guidelines are respected24.

The laws of physics however, impose a different set of challenges on 
MEG. MEG’s signal-to-noise ratio (SNR) decreases faster with source 
depth—that is, the distance between neural generators and exter-
nal sensors. Hence there is a belief that MEG cannot see deep into 
the brain. This should rather be interpreted as decreased sensitivity  
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Figure 2  An example comparing MEG and EEG. Synthetic data were 
generated by impressing a simulated uniform current density on a 1-cm2 
patch of cortical surface (green in b,c). The cortical surface and the other 
tissue compartments (scalp, skull bone, cerebrospinal fluid) were that of the 
ICBM152 template, available in the Brainstorm open-source application138. 
The corresponding, ground-truth MEG data were simulated on the sensor 
configuration of a 275-channel CTF (axial gradiometers) system. The 
256-channel EEG sensor configuration was that of Electrical Geodesics. 
The reference head model was derived using the OpenMEEG boundary 
element method139 with default parameters, also available in Brainstorm. 
(a) Resulting MEG and EEG sensor topographies for the simulated cortical 
source. (b) Estimated cortically distributed currents using the weighted-
minimum norm estimator available in Brainstorm, with default parameters 
(amplitude thresholded above 50% of maximum): the EEG source map has 
a localization bias pointing at the gyral crown lateral to the actual source 
location. This bias is emphasized when using a more typical electrode 
density of 64 channels (inset). (c) Source estimates obtained using 
approximations of the head model: three-shell concentric spheres adjusted 
to the scalp surface, and altered conductivity values (+25% for scalp,  
–25% for skull bone). As predicted from physics of magnetic induction,  
the MEG source map is immune to geometric and conductivity 
approximations, whereas the EEG is not. This latter has considerably  
lower amplitude than the actual current strength (note distinct color  
scales for MEG and EEG).
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with depth, not as an absolute inability to detect activity from medial 
cortical or subcortical brain regions, as we discuss further below. 
MEG is also less sensitive to neural current flows with a radial orien-
tation—that is, those aligned along a virtual radius of the head, from 
its center to the scalp envelope. Here too, the conception that MEG 
is entirely blind to radial sources would actually be valid only if the 
shape of the head were a perfect sphere5.

For all these reasons, and if we assume that brain activity, including 
the sources of event-related components, involves regions present-
ing a variety of depths and current flow orientations, there can be 
at best limited correspondence between MEG and EEG sensor data.  
We also need to bear in mind that these modalities actually meas-
ure different, nonredundant physical quantities. Consequently, 
direct comparison studies between the femtoteslas of MEG and the 
microvolts of EEG sensor data can prove more challenging than ini-
tially thought. The appreciation of converging or complementary  
evidence between the techniques can be best conducted by assessing 
their respective abilities to resolve the physiological currents at their 
source, as discussed below.

Yet we also need to acknowledge that many neuroscience questions 
may not require brain mapping: there is established and continued 
scientific interest in and clinical significance for MEG sensor data 
analyses, in their ability to discriminate between experimental condi-
tions, including with spatial-filtering25 and decoding techniques26, 
and to correlate with or predict behavior27. They also suggest sim-
ple and practical new disease markers28. We re-emphasize, however, 
that the anatomical interpretation of scalp signals remains ambig-
uous, even in MEG. The cross-talk between sensors due to signal  
smearing represents a source of severe confounds, especially to func-
tional connectivity measures29 applied to scalp data. Source imaging 
can alleviate these issues.

MEG as an imaging modality. Relatively to EEG, the advanced sensing 
technology involved in MEG has attracted the continued interest and 
expertise of the physics and electrical engineering community. This 
influence manifests in approaching source localization and imaging as 
inverse modeling, a category of problems common to many subfields of 
applied physics and biomedical imaging5. Indeed, one truly distinctive 
advantage of MEG is arguably in producing time-resolved maps of neu-
ral currents that are considerably less prone to distortion by modeling 
approximations than EEG. There is strong evidence that EEG source 
models suffer from uncontrolled biases caused by inevitable approxi-
mations in defining the head shape30, especially the bone of the skull31. 
The presence of blood vessels also affects EEG source modeling32. More 
generally, the conductivity of head tissues remains in practice unmeas-
urable in vivo33,34, and the approximated values used also impose a 
localization and amplitude bias on estimated EEG sources35,36 (Fig. 2).  
Further approximations in modeling the electrode size and drifts in 
skin-contact impedances also contribute negatively37.

Ground-truth direct-comparison studies of MEG and EEG source 
localization, using electrical sources implanted in realistic skull phan-
toms38,39, confirms the greater sensitivity of EEG to model approxi-
mations. Localization errors of up to 25 mm were produced by EEG 
source modeling, while the maximum MEG localization bias was 
limited to about 1 cm under the same experimental circumstances. 
Multimodal comparison studies taking fMRI as reference tend to 
show lesser differences40, especially when simultaneously recorded 
MEG and EEG data is processed jointly to yield, in principle, a supe-
rior, superadditive joint source model of cortical generators41,42. 
Therefore, whenever possible, a good-practice guideline is to record 
from at least a few EEG electrodes simultaneously with MEG. This 
augments the chances of obtaining converging evidence about the 
underlying brain processes.

Box 1  Toward increased clinical adoption 
The actual value of clinical MEG for epilepsy is now well documented and argued, with large-volume retrospective studies reporting on the level of 
agreement between the noninvasive test and standard-of-care approaches (for example, invasive EEG) in severe cases113,132,133. Yet retrospective  
studies are also limited by design: if MEG is concordant with invasive tests, then it is deemed as good as the latter; if it is discordant and points at 
other possibly epileptogenic brain regions, results need to be carefully assessed depending on whether interventions based on the standard-of-care data 
actually led to long-term freedom from seizures. Ideally, multicenter prospective trials of MEG predictions would need to be conducted, with intracra-
nial explorations guided in part by MEG source imaging, followed by surgical resections, to fully assess the insight provided by MEG.

Other practical limitations include the very duration of present MEG tests. These are typically limited to hour-long recordings to minimize cost  
and maximize patient comfort. This is often very short for capturing canonical epileptiform events such as interictal spikes and, even more rarely,  
seizures, which are still considered of the highest value for clinical diagnosis. Tests are also often performed as outpatient procedures, with patients  
on medication, which further reduces the yield in terms of epileptiform events.

Considering a patient brain as constantly under siege by a neurological or neuropsychiatric disorder, clinical MEG research needs to point at other 
possible markers of aberrant ongoing or stimulus-response brain activity as alternative expressions of disease. A considerable body of work in autism 
spectrum disorder indicates that simple MEG measures of delayed early auditory responses, easily implementable in the clinic, are indicative of the 
syndrome’s severity28,115 and are concordant with magnetic resonance tractography and with predisposing gene dosage134.

Altered expression of background brain rhythms represents another source of electrophysiological MEG markers that remains relatively uncharted.  
This is an opportunity for MEG clinical research to verify the promises of animal research and diseases models in the great variety of insults and  
disorders that affect the human brain135–137. Such research can only benefit from the consolidation and growing availability of large databanks of 
control MEG volumes, to help identify how these new disease markers deviate from normative variants84 (Fig. 4).

MEG is clinically prescribed and reimbursed in a few countries for specific indications, such as pharmacologically intractable epilepsy and presurgi-
cal functional mapping of brain tumors. We note in passing that clinical recognition, including reimbursement, for fMRI tests is still largely lacking as 
well. In principle, clinical demand will boost the number of installations and improve access for researchers, eventually closing the virtuous loop back 
to more clinical indications for MEG tests. This wishful scenario has not entirely happened yet: MEG clinical programs typically see anywhere between 
a dozen and a maximum of a couple of hundred epilepsy cases annually. This situation can pose challenges in terms of financial sustainability if not 
complemented by a critical mass of funded research studies or intramural institutional commitment. Brain tumor cases are rarely seen because MEG 
analysis pipelines remain time-consuming. This is a factor typically incompatible with the time pressures of clinical decision-making and surgical 
interventions in neuro-oncology.

It is the present reality that, so far, MEG vendors have delivered beautifully crafted instruments without investing enough resources in developing 
truly efficient software analysis pipelines to serve the special needs of clinical practitioners. Productive MEG clinics are those who have invested in  
the brain power to compensate for these commercial lacunae.
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The sources of bias that are specific to MEG are well identified 
and controlled. The sensitivity and therefore the spatial resolution of 
MEG source imaging are indeed uneven across the brain: for instance, 
superficial cortical sources produce MEG signals up to 100 times  
stronger than deeper, subcortical structures at equivalent current 
strengths43,44. However, there is both modeling45 and increasing 
experimental evidence that with optimized paradigm designs and 
signal extraction techniques, brain regions as deep as the insula46, 
thalamus47, hippocampus48, amygdala49–51 and brainstem52,53 can be 
resolved with MEG.

Concerning the influence of current flow direction, brain regions 
in sulcal walls (tangential current flow) produce MEG signals that are 
stronger than sources along gyral crowns (radial current flow). We 
also emphasize that, SNR differential effects notwithstanding, the ori-
entation of primary currents affects positively the spatial resolution of 
MEG source imaging: recent empirical results in the visual cortex indi-
cate that the activity of cortical locations separated by about 0.5 mm  
can be resolved if the angle between their respective current flow is at 
least 45°, a range compatible with typical cortical gyrification54. These 
results confirm simulation studies that demonstrate the sensitivity of 
MEG signals to minute changes between cortical layers55 and at the 
sub-millimeter scale of cortical columns56.

All these factors influencing the sensitivity of MEG source imaging 
are fully characterized quantitatively from the physical forward model 
of an individual’s anatomy. SNR can also be estimated routinely using 
empty-room recordings, with no participant under the sensor array. 
This is another advantage of MEG with respect to EEG, for which 
actual skin contact of the electrodes is required.

Nevertheless, with substantial operating costs and a capital invest-
ment that compares to that of an MRI scanner, a research organization 
needs further reasons to support the initiation and development of an 
MEG program. The comparison with MRI is relatively unfair: in the 
early years, a crucial factor that facilitated the development of MRI 
neuroimaging research was the fast-growing installation of clinical 
scanners that were also made partially available to researchers. Hence 
scientists were not required to primarily cover the platform’s operat-
ing costs. The clinical recommendation and recognition for MEG, 
although growing57 (Box 1), have not been sufficient yet to increase 
the number of clinical MEG units to a level that would facilitate access 
to the broadest research community. Hence, the decision to initiate 
and maintain an MEG program is a matter of institutional research 
strategy. The initiative needs to be supported by a sufficiently large 
and diverse critical mass of investigators intrigued by the assets of 
the technique. Financially, a clear plan needs to be laid out so that 
operating costs can be assumed by a combination of fees for access 
and institutional funds.

Strategically, MEG imaging represents a strong scientific asset in the 
neuroscience portfolio of a research intensive institution: it is directly 
sensitive to neural electrophysiology and therefore independent of a 
signal transduction model. The millisecond temporal resolution of 
neural signal dynamics across the entire brain is obviously another 
hallmark of MEG compared to functional MRI (fMRI), positron emis-
sion tomography (PET) or optical techniques58. We have seen that 
multiple factors expose EEG imaging to uncontrolled sources of local-
ization bias. Other electrophysiological methods, such as intracranial 
stereotactic EEG and electrocorticographic implants, have obvious 
limitations in terms of invasiveness, and coverage of the cerebrum is 
confined to a limited number of disease-prone regions.

Other practical advantages over in-bore scanning with PET and 
fMRI include a safe, quiet and open environment inducing minimal 
claustrophobic stress, especially in special populations, with posture 

adjustable anywhere between upright and supine. Ferromagnetic 
elements used in dental works and implants can cause complex arti-
facts59 but, unlike in MRI, do not pose safety concerns.

MEG also offers remarkably versatile concurrent signal acquisition 
and analytic combination opportunities for the realization of genuine 
multimodal studies, with high-density scalp EEG60,61, intracranial 
local field potentials62–64, deep-brain65,66 and scalp67,68 current stimu-
lation devices; all kinds of peripheral measures to study their coupling 
with brain activity (eye tracking and pupil diameter, heart rate, skin 
conductance, muscle electrophysiology, motion capture, behavioral 
equipment, etc.); and real-time neurofeedback69,70.

Reduced analytic complexity for greater adoption. One recurrent 
bottleneck to the broader adoption of MEG has been the perceived 
intricacies of its data workflow. The reasons are multifaceted (Fig. 3). 
First, MEG signals are rich and complex: we will review in the next 
section how this is a matter of active research. Still, it also remains a 
source of uncertainty to MEG users. They therefore need to be offered 
the best possible guidance to define the signals of interest in their 
data and navigate the plethora of signal extraction measures avail-
able. A constructive stance is to encourage investigators to formulate 
their research hypotheses in terms of electrophysiological markers 
(for example, event-related responses, oscillatory components, cross-
frequency interactions, inter-regional coherence, etc.) of mecha-
nisms related to a theoretical framework. Exploratory MEG studies 
are essentially bound to fail, considering the volume of data and the 
analysis dimensions enabled by MEG’s mass electrophysiology.

Another element that has somewhat inhibited MEG’s development 
is that, as in EEG, the physics principles underlying source imaging are 
fundamentally ill-posed. This means that an infinite number of source 
models can fit the sensor data equivalently well. Such manifestation of 
mathematical ill-posedness is very common in many fields of physics, 
signal detection and estimation theory, and can be addressed with 
sound methodological principles5. Nevertheless, this originally gave 
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Figure 3  Major steps required and possibilities offered by MEG analytics. 
Like other brain imaging modalities, MEG requires that several important 
procedures be followed in data analytics. (1) The preprocessing steps  
are crucial to assure that data quality is optimal at the time of collection  
and before engaging sophisticated signal extraction procedures.  
Data segments contaminated by artifacts need to be identified and rejected 
or attenuated. (2) The modeling stage for MEG imaging requires that a  
few important options for parameters selection be considered carefully  
(for example, template versus individual head shape, noise definition, image 
reconstruction parameters). (3) Signal extraction usually depends on the 
design of the experiment and is very versatile in MEG. (4) The set of possible 
measures is immense because of the multidimensional components of 
the data (space, time, frequency). (5) The final statistical steps can either 
include inference and hypothesis testing, or statistical learning techniques 
for signal classification, and other derivatives.
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room for too many methods to present unverifiable evidence of claims 
to excellence, aggravated by a lack of sharing with the community 
following journal publication. This did not contribute to building con-
fidence among potentially new users of MEG. Fortunately, this phase 
has receded: the methods have grown mature and pragmatic, with now 
high-quality commercial and academic software packages that have 
greatly augmented users’ access to training, their productivity and 
their deeper understanding of methods and their limitations71.

Opportunities for machine learning and big-data neuroscience. 
New approaches to MEG signal analysis have recently spun off from 
the tremendous developments and growing availability of data clas-
sification and feature extraction techniques, based on the principles 
of machine learning72. These methods emerged only recently in the 
MEG arena, although they are already demonstrating very significant 
potential in augmenting the scientist’s toolkit.

Relatively simple implementation of machine-learning decoding 
techniques for multidimensional signal classification showed impres-
sive applications in identifying early components of visual object  
categorization73 and in tracking the temporal organization of spatial 

patterns of brain activity74 or that of a mnemonic template in the 
context of perceptual decisions75. The fact that these methods are, 
for now, fairly independent of signal models make them an attractive  
complement to MEG researchers for rapid evaluation of their data—
for example, to assess the presence and spatiotemporal topography of 
effects between experimental conditions or cohorts. Such approaches 
were recently and beautifully extended to joint multimodal process-
ing of MEG and fMRI data76: a form of machine learning–based 
conjunction analysis of similar representations of features in both 
datasets resulted in fMRI voxel clusters being animated with MEG’s 
millisecond temporal resolution. Representations similarity analyzes 
of a similar kind were also extended to the joint processing of MEG 
data with the outputs of a deep neural network, respectively obtained 
from and trained on the same visual categorization task77. This highly 
innovative, multimodal approach promises to take best advantage of 
neuromimetic models to refine, and maybe discover, new mecha-
nistic principles of brain function, potentially generalizable to other  
functional systems and patient populations.

The present renaissance of artificial intelligence methods is also 
boosted by access to readily available computing and large data storage  
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Figure 4  Toward big-data MEG. (a) Example of the outcome of an MEG imaging database (data from OMEGA84). Ninety-six healthy participants were scanned 
in the resting state for 15 min with their eyes open. MEG imaging of their cortical activity was performed using the same method as for Figure 2. The average 
distribution of the magnitude of ongoing brain rhythms (from delta to gamma) found in the cohort are registered to and represented on the Colin27 brain 
template cortical surface. Data were thresholded at 50% of maximum amplitude across the cortex. (b) Large data repositories such as OMEGA can be used 
to establish normative and patient variants of any analytic measure taken from MEG source signals. This is illustrated here, where for each measure and each 
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resources. More generally, resorting to big-data tools and methods is 
becoming increasingly strategic in neuroscience research involving 
brain imaging: analysis pipelines have grown in sophistication, and 
data volumes have inflated concurrently with the augmented spatial 
and temporal resolution of instruments. There is also a growing sci-
entific motivation to combine multiple data types (genotypes, imaging 
and behavioral phenotypes, clinical data, tissue samples, etc.), which 
transforms every research participant’s record in a big-data volume. 
In parallel, community awareness is now growing toward expanding 
the curated value and lifetime of data collections in public research: 
the increasing number of open data-sharing initiatives emphasize 
and incarnate stronger educational, economical, ethical and societal 
values in science78. For the neuroimaging community, this repre-
sents a vital opportunity to validate methods more thoroughly and to  
overcome the limitations of small-sample, low-powered and conse-
quently poorly reproducible studies that are eventually detrimental 
to the credibility of the field79.

Until recently, MEG was lagging behind MRI in that respect80–82. 
Reasons include the lack of a standard file format for MEG raw data 
and the large volume occupied by high-density recordings (typically 
>100 MB per minute). Fortunately, these bottlenecks are gradually, 
and at least partially, being overcome by the increasing availabil-
ity and versatility of software readers for most native data formats. 
Storage capacity, especially in the cloud, has now become ubiquitous 
and more affordable. The Human Connectome Project was first to 
distribute MEG data on a large scale, from a subsample of its cohort, 
along with extensive multimodal MRI, behavioral and genetic data83.  
With about 150 data volumes available, the Open MEG Archives 
(OMEGA) is the second-largest repository of resting-state MEG data, 
and it contains T1-weighted MRI volumes of participants84 (Fig. 4a). 
The recent CAM-CAN initiative features data from about 650 healthy 
participants ages 18–88, combined with multimodal MRI and exten-
sive cognitive testing85.

We rejoice that more of these initiatives are on the horizon, as they 
will with no doubt increasingly contribute to improving data integ-
rity and consistency across sites, reproducibility of research results, 
and the development and benchmarking of new analysis methods 
that were statistically too low powered with smaller data cohorts  
(Fig. 4b). Finally, flexible statistical inference methods based on 
non-parametric approaches have been designed to adequately han-
dle the multiple dimensions of MEG data (space, frequency and time,  
typically) and efficiently control for multiple comparisons in  
hypothesis testing86,87.

To conclude, MEG occupies a unique, strong position in the land-
scape of human neuroscience techniques. Conceptually and effec-
tively, it plays a privileged and scientifically significant role in bridging 
human electrophysiology with other imaging signals and modalities. 
The access the technique provides to large-scale neurodynamics is a 
tremendous opportunity to bridge the study of human brain activity 
with the mechanisms identified and readily testable with animal and 
disease model electrophysiology, as we shall see in the next section.

A window on large-scale neurodynamics
Many researchers who are new to MEG find themselves puzzled, if not 
frustrated, by the sheer volume and complexity of experimental data 
produced. What is signal? Is this noise? How to implement a test to 
detect signal changes between experimental conditions? How to meas-
ure functional connectivity? These interrogations are active research 
topics in MEG. They contribute to the broader objective of compre-
hending and exploiting how brain activation, in terms of regional 
and large-scale neural dynamics, is expressed in electrophysiology88.  

Yet many potential users of MEG are under the impression that the 
field is not mature enough or that the technique is too complicated alto-
gether. All things considered, these are questions that actually concern 
all electrophysiology and imaging methods: the apparent simplicity 
of fMRI data and of some widely used analysis pipelines, for instance, 
should not mask their intrinsic limitations89,90 and the share of fragility 
in their methodological assumptions and sophistication91.

MEG signals: rich and complex. Event-related components  
such as ERFs represent only a small fraction of the wealth of  
information present in MEG signals. One key scientific objective  
is indeed to understand how transient or tonic responses emerge 
from and reshape the busy resting-state activity of the brain92,93. 
This represents a conceptual, and somewhat iconoclastic, shift from 
the classical tradition of considering spontaneous, ongoing brain 
activity as ‘neural noise’. It is necessary, though, to comprehend the 
rich expressions of distributed and interdependent neural dynam-
ics available in MEG signals and to make the most of the modality’s  
imaging capacity. Electrophysiology is not the only domain of  
biology undergoing a similar change of paradigm, exploiting the 
higher order statistics of experimental measures beyond the tradi-
tional trial or group average.

Bridging with other imaging modalities and animal electrophysi-
ology contributes to a deeper comprehension of the nature of brain 
signals observed with MEG imaging94. For instance, the explosion of 
interest in fMRI resting-state and task-based connectomics prompts 
the identification of equivalent signaling mechanisms in neural elec-
trophysiology95,96. Counterintuitively, there is little correspondence 
between MEG and fMRI resting-state networks when MEG source 
signals are extracted in the frequency bands that show the strongest 
correlation between electrophysiology and fMRI, namely gamma97,98, 
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Figure 5  Frequency-dependent expressions of inter-regional connectivity.  
(a) Illustration of frequency-dependent functional connectivity measures. 
MEG source imaging of 5-min resting-state (eyes open) data in typical alpha, 
beta and gamma frequency bands was obtained using the same methodology 
as in Figure 4 (the strengths of cortical currents are not shown here; data 
sample from OMEGA84). Coherence in all frequency bands of interest 
between every pair of cortical source locations was extracted and thresholded 
above the 90th percentile. Virtual white-matter tracing yields convenient 
and anatomically compatible representations (shown here for visualization 
purposes) of such complex, multidimensional connectivity data (S. Dery 
and S.B., unpublished data). (b) Resting-state networks obtained with MEG 
imaging. Regions that demonstrate similar dynamics of phase amplitude 
coupling fluctuations over minutes of resting-state MEG recordings segregate 
in networks that are similar to those found in fMRI. The first four principal 
spatial modes of connectivity found across 12 subjects are shown.  
See ref. 101 for details on the approach.
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but also slower oscillatory ranges such as delta and theta99. In fact, 
MEG time series in the beta range (15–35 Hz), when processed with 
fMRI-like data-driven resting-state pipelines, were first to reveal rest-
ing-state networks compatible with fMRI’s topography100. Studies had 
shown indeed that local field potentials in the beta band were weakly 
negatively correlated with blood oxygen level–dependent (BOLD) 
traces99. Gamma and the slower BOLD-correlated frequency bands 
(delta through alpha) were later shown to also form an electrophysi-
ological scaffold for resting-state networks101, when combined using 

cross-frequency coupling measures translated from animal and 
intracranial human electrophysiology102 (Figs. 5 and 6b).

Bringing everything together: polyrhythmic mechanisms of brain 
functions. Taken together, and although seemingly complicated, 
these observations are actually mutually compatible when consid-
ering a mechanistic construction. Here we propose one possible 
model of polyrhythmic integration to reconcile published reports 
that are seemingly disparate across the frequency spectrum of  
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Figure 6  A possible mechanistic framework of polyrhythmic brain activity. (a) A typical power density spectrum (80-s resting-state data from a 55-year-old 
healthy adult with eyes open; Welch’s method, 2-s windowing) shows the distribution of power averaged across all 275 channels of a CTF MEG system. 
Typical brain rhythms are marked; note the prominent peak in power in the 8- to 12-Hz alpha range. (b) These rhythms are coupled and interdependent, 
which can be revealed by measures of cross-frequency interaction, such as phase–amplitude coupling (PAC). Here, PAC analysis of MEG traces obtained 
in the resting-state (10 min) of a healthy 40-year-old adult (eyes open) shows that the amplitude of gamma activity is modulated by the phase of slower 
oscillations. Each panel indicates (i) the average of ongoing MEG source time series epoched on a [–0.5, 0.5] s time window about the trough of the local 
slow oscillation the most highly coupled with fast gamma activity in the 80- to 150-Hz range and (ii) the average time–frequency decomposition of the power 
of the MEG source signal, indicating how it is modulated with the phase of the underlying oscillation (see ref. 101 for details). The colored dots indicate the 
locations on the cortex where the sample signals were extracted. (c) The slower delta to alpha rhythms mark the net excitability of cell assemblies consisting 
of slow and fast inhibitory (SI and FI, respectively) and excitatory (E) cells. Possible theoretical frameworks for the organization of brain rhythms, such as 
the model of synchronized gating101 and others140,141, consider brain network formation and communication to be enabled by the phase alignment of 
these cycles between regions. This can be facilitated by the mechanism of dynamical relaying142 via the thalamus or cortical hub regions. While gamma 
bursts could contribute to bottom-up signaling (black arrows), beta bursts could manifest top-down modulations of upstream regions (magenta arrows) and 
thereby contribute to the implementation of contextual predictive inference of input signals. (d) Such a dynamical scaffold, among others possible, helps 
formulate testable hypotheses from MEG signals. For instance, the occurrence of a stimulus (input) interferes with the ongoing E/I dynamics in a primary 
sensory region. This may provoke the resetting of the phase of local E/I cycles and trigger the temporal prediction of the next stimulus occurrence via an 
afferent volley of beta oscillations. This process repeats and paces the net inhibition of the local cell assembly according to the next anticipated stimulus 
occurrences. Such a model predicts that input signals to a brain network would fall optimally at the phase of maximum net excitability of the input node.  
One consequence would be to maximize the perceptual processing of the stimulus by facilitating the relaying of its neural representation downstream106.
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electrophysiological signals. The purpose is essentially to propose a 
roadmap to guide future research, including the formation of test-
able hypotheses for scientists interested in MEG. At the mesoscopic 
regional scale, slower rhythms (delta through alpha) mark the phase 
of relative excitability of cell assemblies10,103. Gamma bursts tend to 
occur in volleys nested at certain phases of these slower rhythms, a 
well-studied phenomenon of coupling across frequencies captured by, 
for example, phase–amplitude coupling104,105 measures (Fig. 6a,b).  
There is increasing evidence106 that gamma cycles could represent 
timed opportunities for neural representations of, for example, 
incoming stimuli to be registered by cell assemblies and propagated 
further downstream in a bottom-up fashion.

Beta oscillations so far have not been found to pace gamma bursts 
and do not seem to be driven directly by colocalized slower rhythms 
in the human resting state101. According to computational models 
and nascent experimental data107, they are rather thought to signal 
top-down modulations from higher order, executive regions in brain 
networks (Fig. 6c,d).

A global roadmap for MEG to build on these recent and still rela-
tively sparse advances would ideally consist in (i) further clarifying 
the physiological principles structuring the local-to-global dynamics 
of neural oscillations, (ii) defining measures of regional activation  

and inter-areal communication in brain systems that are driven by 
these biological principles (iii) using these measures to survey the 
dynamical repertoire of the resting brain, which remains largely 
uncharted, and (iv) understanding how sensory inputs interact with 
this repertoire, enabling functional integration and eventually behav-
ior. Approaching future MEG research with this plan would open 
considerable perspectives—for instance, by verifying that aberrant 
repertoire phenotypes are expressed in diseases. This would enable 
a new generation of electrophysiological markers of pathology and 
eventually new forms of intervention.

Contributions to neuroscience
Research productivity. Our bibliographic survey (source: Web 
of Knowledge) indicates that, in volume, the yearly production of  
scientific publications concerning MEG has been increasing over the 
past 25 years. About 750 indexed journal articles and conference pro-
ceeding entries are published on an annual basis (Fig. 7a). However, 
although fMRI and PET were developed more recently, fMRI some 
20 years after MEG, their respective volume of research production 
approaches three (for PET) to eight (for fMRI) times that of MEG’s. 
The historically oldest technique of all, EEG, remains the leading inte-
grative neuroscience tool, with fMRI as a close runner-up. In addition  
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to continued scientific pertinence, EEG’s longevity and preeminence 
are supported by its relative affordability, which facilitates access 
in most research organizations, and the emergence of low-cost,  
consumer-grade EEG products for a new range of applications such as 
brain–computer interfaces and biofeedback explorations108. One par-
ticular distinction of MEG with respect to EEG’s considerable volume 
of research is source imaging and modeling as a particular topic of 
interest. This concerns only about 6% of all EEG research, compared 
to at least one-third in MEG. We also note that since the turn of the 
twenty-first century, the research output of all techniques has been 
slowly declining relatively to fMRI’s (Fig. 7b).

MEG at present contributes 5% of the neuroscience research  
that uses the techniques surveyed, although with increasing impact 
(Fig. 7c). As of 2015, about 10,400 articles cited published MEG 
research, with an average of eight citations per MEG article. Further, 
the geographic distribution of the community shows healthy diversity 
(Fig. 7d) and growing stamina: in a 5-year period around 1990, 52 
organizations had researchers publishing with MEG. This number 
grew to 433 around the year 2000 and is now above 1,000 research 
organizations involved in or collaborating on MEG research over the 
past 5 years.

Highlights. We have already reviewed the unique contributions and 
potential of MEG for studying the large-scale dynamics of brain activ-
ity. This represents the strongest scientific asset of the technique. More 
thematically, MEG users have been investigating the principal topics 
of systems and behavioral neuroscience, with greater representation 
from systems, cognitive and clinical research studies, the strong pres-
ence of methodological developments, and emerging themes such as 
resting-state brain research (Fig. 7e). Excellent topical reviews are 
available to dive into each subfield in detail: methods109; the inte-
grative neuroscience of language110; consciousness111,112; and trans-
lational aspects of clinical neuroscience, including epilepsy113,114, 
autism spectrum disorders115 and movement disorders116.

We wish to highlight an experimental approach that is not specific 
to the modality, but which has gained significant momentum in MEG. 
It consists in entraining neural systems with steady-state sensory 
stimulation or detecting brain activity that is temporally coherent 
with behavioral or peripheral measures, such as movement param-
eters. Such experimental models take great advantage of the tempo-
ral resolution of the technique and enhance SNR by ‘tagging’ neural 
responses with stimulus-imposed or stimulus-induced frequencies of 
interest. A body of compelling work has grown in audition117, includ-
ing prosodic features of natural speech118,119 and music120 perception; 
vision121,122; attention123,124 and motor system125 research using such 
methodology. The reader may refer to our annotated bibliography 
and other recent reviews9,126 for more detailed highlights of MEG 
contributions to neuroscience.

Conclusions
We have reviewed MEG as a neuroimaging modality in its own right, 
for the widest range of integrative neuroscience research topics. 
Although its scientific presence is strong, MEG could attract a larger 
and broader community of scientists. Advances in research methods 
and practical tools are now available to make MEG more accessible.  
Although the signals are complex, their extraction and interpre-
tation can be facilitated by the emergence of testable mechanistic  
frameworks of interdependent neural dynamics.

Like those for MRI and PET, initiatives to share large MEG 
data openly in repositories are now well underway. This is bene
ficial to establishing normative and disease-specific variants of  

electrophysiological activity and to the reproducibility and generaliza-
tion of research methods and results.

Commercial entities could at present better manage the expecta-
tions of practitioners to avoid misconceptions about MEG as a routine  
clinical modality. Looking forward, they could make stronger efforts 
toward the integration of research tools into certified analytic  
pipelines. This would with no doubt increase the yield of MEG in the 
epilepsy clinic and see the modality penetrate more subspecialties  
of neurology and neuropsychiatry.

We also emphasize that MEG is a technique that readily bridges with 
other measures and methods such as electrophysiology (intracranial 
local field potential recordings and scalp EEG), blood flow and oxygen 
metabolism (near infrared spectroscopy), brain stimulation (transcranial 
direct current stimulation and transcranial alternating current stimula-
tion), all of which can be performed concurrently with MEG. This offers 
researchers tremendous opportunities to cross-validate findings between 
techniques and between human and animal bodies of work, and to build 
on the superaddition of jointly processed multimodal data volumes.

To conclude, the sensitivity of MEG to a large spectrum of fast, 
oscillatory brain signals, combined with its superior ability to map 
their anatomical origins, makes it a powerful tool for verifying predic-
tions from theoretical frameworks concerning brain functions, the 
mechanisms of directed connectivity in brain networks127,128 and, 
more generally, perception and behavior as biological expressions of 
predictive inference129–131.
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